С 1 июля 1957 года началась масштабная международная программа ЮНЕСКО - Международный геофизический год (МГГ). Значительная часть программы МГГ была выполнена на астрономических обсерваториях. Проводились солнечные исследования и другие астрономические наблюдения, связанные с геофизическими явлениями. В июле астрономы Государственного астрономического института им. П.К. Штернберга МГУ (ГАИШ) выехали в экспедицию для проведения наблюдений по этой программе. В задачу экспедиции входили исследования теллурических линий (спектральных линий, образующихся в спектре Солнца при поглощении солнечного излучения молекулами земной атмосферы), непрерывного спектра Солнца и природы противосияния. Для наблюдений была выбрана сравнительно ровная площадка высокогорного пастбища на высоте около 2900 м над уровнем моря, расположенная в горах Северного Тянь-Шаня в 40 км от города Алма-Ата. От астрономов казахстанского Астрофизического института им. В.Г. Фесенкова было известно о хороших условиях для наблюдений в этих местах несмотря на близость крупного города.

Место оказалось удачным. Действительно, здесь были нередки безореольные дни, то есть такие дни, когда небо вблизи диска Солнца обладало практически такой же яркостью, что и на значительном удалении. Это свидетельствовало о почти полном отсутствии аэрозолей в атмосфере на высотах выше наблюдательной площадки. Конечно, молекулярное рассеяние уменьшается на высоте 3000 м только на 25%, но оно рассеивает свет практически во все стороны и поэтому в отличие от рассеяния на аэрозолях не дает ореола. Для наблюдений были установлены небольшой бесщелевой спектрограф, горизонтальный солнечный телескоп, внезатменный коронограф, 8-дюймовый рефрактор и другие небольшие астрономические приборы.

Через 5 лет высокогорная экспедиция ГАИШ превратилась в постоянную высокогорную наблюдательную станцию, однако еще в течение 30 лет она называлась Тянь-Шаньской высокогорной экспедицией (ТШВЭ). В первые годы существования экспедиции там выполнялись исследования в области физики Солнца, теллурических линий, оптических свойств земной атмосферы, спектральные наблюдения зодиакального света, противосияния и свечения ночного неба, исследования распределения энергии в спектрах звезд в ультрафиолетовой области, наблюдения затменных переменных звезд.

Результаты исследований прозрачности атмосферы показали, что ослабление света, вызванное аэрозолями, в большинство ясных дней и ночей составляет всего 0,02-0,03. Вследствие этого изменения прозрачности на временах от минут до часов составляют только доли процента. Наилучшая прозрачность и максимальное количество ясной погоды приходится на осенне-зимний период. Обычно превосходные условия изредка могут сильно ухудшаться из-за некоторых глобальных явлений. Например, в течение года после извержения вулкана Пинатубо (Филиппины, 1991 год) не было ни одного безореольного дня и величина ослабления света аэрозолями не опускалась ниже 0,10. Подобное ухудшение прозрачности атмосферы было отмечено на многих обсерваториях мира.

В 1972 году был установлен кудэ-рефрактор фирмы "ОПТОН" для наблюдений активных областей на Солнце с уникальным фильтром на водородную линию Нa. В течение 20 лет он использовался в сети оповещения и прогноза протонных вспышек для космических полетов.

В 1966 году в экспедиции был установлен небольшой телескоп-рефлектор с диаметром зеркала 0,5 м для фотоэлектрических измерений блеска звезд. Первые же наблюдения подтвердили наличие прекрасных условий для фотоэлектрической фотометрии и спектрофотометрии. В 1983 году был смонтирован второй такой же телескоп АЗТ-14. 
На установленных телескопах с помощью фотоэлектрических многоцветных фотометров (обычно используются четыре общепринятые спектральные полосы: W или U, B, V и R, расположенные соответственно в ультрафиолетовом, синем, зеленом и красном районах оптического спектра) проводили измерения классических переменных звезд и содержащих релятивистские объекты двойных звездных систем. Возможность проводить многоцветные измерения с точностью лучше 0,5% позволили получить ценные научные результаты.

Какую же информацию могут получить астрономы при высокоточных измерениях блеска звезд в разных спектральных областях? Во-первых, это определение светимости, основной энергетической характеристики звезд и других астрономических объектов (конечно, при известном расстоянии). Измерение блеска в нескольких спектральных полосах дает возможность достаточно точно оценить температуру поверхности звезды, ее спектральный класс - характеристику, тесно связанную с массой звезды, выделить среди обычных звезд звезды с особенностями - объекты, очень интересные для дальнейших исследований.

Во-вторых, измерение блеска проводится для обнаружения или изучения переменности блеска звезд. Характер переменности тесно связан с внутренним строением звезд или показывает, что мы имеем дело с двойными или более сложными системами звезд. Исследования переменности блеска в оптическом диапазоне часто дополняются измерениями в других областях электромагнитного спектра (от радио и до рентгеновских лучей) и являются мощным инструментом для определения физической природы астрономических объектов.

В конце 70-х годов в Тянь-Шаньской высокогорной экспедиции были проведены успешные опыты по использованию компьютеров в фотометрических наблюдениях для проведения высокоскоростной фотометрии. Например, для того чтобы получить детальную картину явления покрытия звезды Луной, требуется временное разрешение порядка 1 мс. Детальная кривая блеска этого явления, определяемая дифракцией света на лунном крае, содержит в себе информацию об угловом размере затмеваемой звезды. Наблюдения покрытий звезд Луной с целью получения физических характеристик звезд были выполнены в экспедиции впервые в нашей стране.
Большое внимание уделялось измерениям другого рода - с целью создания фотометрических каталогов. В 1985-1988 годах был проведен фотоэлектрический обзор ярких звезд северного неба, в результате которого получены высокоточные звездные величины в четырех полосах спектра для 13,5 тыс. звезд. Успешным наблюдениям способствовали уникальные условия ТШВЭ и новая приемная аппаратура с использованием компьютера. Каталог, созданный на основе этих наблюдений, уникален по точности, полноте и однородности и широко используется в мире при проведении фотометрических исследований.

ТЯНЬ-ШАНЬСКАЯ АСТРОНОМИЧЕСКАЯ ОБСЕРВАТОРИЯ

Напомним основные особенности Тянь-Шаньской высокогорной экспедиции с точки зрения условий для астрономических наблюдений: 1) является одной из самых высоко расположенных над уровнем моря обсерваторий в мире: в мире только три обсерватории расположены выше и еще около пяти располагаются на такой же высоте; 2) удачно расположена по долготе, является одной из самых восточных обсерваторий на территории бывшего СССР. Этот фактор важен при проведении синхронных и координированных с другими обсерваториями наблюдений Солнца и звезд; 3) имеет превосходные дневные астроклиматические характеристики: большое количество безореольного ясного дневного наблюдательного времени при хорошем качестве изображений; 4) отличается большим количеством ясной ночной погоды, причем в отличие от других обсерваторий максимум приходится на осенне-зимний период. Очень хорошая и стабильная прозрачность атмосферы с малым содержанием пыли и воды при качестве изображений лучше среднего делают это место идеальным для высокоточной фотометрии в оптическом и инфракрасном диапазонах.

Исходя из этих особенностей и учитывая реально сложившиеся в экспедиции направления наблюдательных исследований Государственный астрономический институт им. П.К. Штернберга МГУ решил значительно расширить свою наблюдательную базу. Вскоре начались работы по созданию на основе ТШВЭ современной обсерватории, ориентированной в первую очередь на звездные фотометрические наблюдения и солнечные исследования. В конце 80-х годов XX века были построены новые здания Тянь-Шаньской астрономической обсерватории, установлены два современных телескопа с диаметром зеркал 1 м. Совместно с Чешской академией наук установлен новый горизонтальный солнечный телескоп (диаметр зеркал 0,6 м) с уникальным спектрографом с фокусным расстоянием 35 м.

Для новых телескопов разработана и приемная аппаратура. Это четырехканальные электрофотометры, позволяющие одновременно измерять блеск звезд в четырех спектральных полосах оптического диапазона. Применение таких фотометров экономит время измерения отдельного объекта и позволяет проводить многоцветную фотометрию объектов с быстрыми изменениями блеска. Для исследования слабых объектов более пригоден панорамный фотометр на основе ПЗС-матрицы. ПЗС-матрица - это приемник излучения на основе внутреннего фотоэффекта, позволяющий получать цифровое изображение (обычно порядка 1000 i 1000 элементов изображения) исследуемой области неба.

Конечно, по современным меркам телескопы с зеркалом 1 м - это небольшие телескопы. Проводить на них исследования очень слабых астрономических объектов невозможно. Однако для высокоточных измерений блеска звезд ярче 15-й звездной величины телескопы диаметром 1-1,5 м являются оптимальными в смысле отношения результатов к стоимости. Как правило, на таких телескопах решаются астрономические задачи, требующие большого количества наблюдательного времени (десятков и сотен ночей). Две из них мы отметим особо.

Прежде всего это исследования двойных систем - источников рентгеновского излучения, изучение которых в оптическом диапазоне спектра дает существенную информацию о свойствах вещества в экстремальных физических состояниях. Особенно ценны измерения, выполненные одновременно с наблюдениями в других диапазонах электромагнитного спектра, например с наблюдениями орбитальных рентгеновских обсерваторий.

Другая задача - высокоточная фотометрия всех звезд ярче 10-й звездной величины. Общее число таких звезд примерно 200 тыс. Подавляющее количество из них не имеет точных многоцветных измерений блеска в оптическом диапазоне. После завершения космического астрометрического эксперимента "Гиппаркос", измерившего расстояния от Земли для большей части таких звезд, точные фотометрические данные для них просто необходимы.

Важным обстоятельством для эффективных фотометрических наблюдений является использование современных компьютерных технологий, в том числе сетевых. Большое значение имеет возможность оперативного обмена данными наблюдений с другими обсерваториями мира и отдельными исследователями. Дело в том, что поведение некоторых астрономических объектов часто непредсказуемо, а наиболее интересным с точки зрения астрофизики являются моменты резкого изменения их оптических характеристик, сопровождающие глобальные изменения строения этих объектов. Самый известный пример - это новые и сверхновые звезды, а также загадочные гамма-всплески, у которых, согласно новейшим данным, наблюдаются оптические проявления.

К тому же, как показывает вековой опыт, астроном, поставивший наблюдательную задачу, должен присутствовать при наблюдениях, хотя бы даже виртуально. Реальное присутствие не всегда возможно, да и обходится недешево. В мире уже существуют несколько фотометрических телескопов, наблюдать на которых можно не выходя из дома. Если добавить к этому открывающиеся возможности включения действующей астрономической обсерватории в образовательный процесс, то подсоединение компьютеров телескопов обсерватории в глобальную сеть ИНТЕРНЕТ не только оправданно, но и крайне необходимо. Именно по такому пути развиваются другие астрономические обсерватории, так должна развиваться и Тянь-Шаньская астрономическая обсерватория.